1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import cv2
- import math
- import numpy as np
- from .utils import *
- from copy import deepcopy
- from hmOCR.argument import Args
- class Classifier:
- def __init__(self, args: "Args"):
- self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
- self.cls_batch_num = args.cls_batch_num
- self.cls_thresh = args.cls_thresh
- postprocess_params = {
- "name": "ClsPostProcess",
- "label_list": args.cls_label_list
- }
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors = create_predictor(args, "cls")
- def resize_norm_img(self, img):
- imgC, imgH, imgW = self.cls_image_shape
- h = img.shape[0]
- w = img.shape[1]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH)) # noqa
- resized_image = resized_image.astype("float32")
- if self.cls_image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def __call__(self, img_list):
- img_list = deepcopy(img_list)
- img_num = len(img_list)
- # Calculate the aspect ratio of all text bars
- width_list = []
- for img in img_list:
- width_list.append(img.shape[1] / float(img.shape[0]))
- # Sorting can speed up the cls process
- indices = np.argsort(np.array(width_list))
- batch_num = self.cls_batch_num
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- max_wh_ratio = 0
- for ino in range(beg_img_no, end_img_no):
- h, w = img_list[indices[ino]].shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- for ino in range(beg_img_no, end_img_no):
- norm_img = self.resize_norm_img(img_list[indices[ino]])
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- self.input_tensor.copy_from_cpu(norm_img_batch)
- self.predictor.run()
- prob_out = self.output_tensors[0].copy_to_cpu()
- self.predictor.try_shrink_memory()
- cls_result = self.postprocess_op(prob_out)
- for rno in range(len(cls_result)):
- label, score = cls_result[rno]
- if "180" in label and score > self.cls_thresh:
- img_list[indices[beg_img_no + rno]] = cv2.rotate(img_list[indices[beg_img_no + rno]], 1) # noqa
- return img_list
|