uart2tcp.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <unistd.h>
  4. #include <fcntl.h>
  5. #include <termios.h>
  6. #include <string.h>
  7. #include <sys/socket.h>
  8. #include <arpa/inet.h>
  9. #include <sys/ioctl.h>
  10. #include <net/if.h>
  11. #include <time.h>
  12. #define False -1
  13. #define True 0
  14. #define BuffSize 256
  15. #define AppLog(msg...) if(LogOn){printf("Uart Log At Line[%d] >> ",__LINE__);printf(msg);printf("\n");}
  16. #define AppErr(msg...) printf("Uart Error At Line[%d] >> ",__LINE__);printf(msg);printf("\n");
  17. unsigned char LogOn = 1;
  18. typedef struct {
  19. unsigned int year: 12, month: 4, day: 8, hour: 8, minute: 8, second: 8;
  20. } Time;
  21. void Now_Time(Time *now) {
  22. time_t currentTime = time(NULL);
  23. struct tm *localTime = localtime(&currentTime);
  24. now->year = localTime->tm_year + 1900;
  25. now->month = localTime->tm_mon + 1;
  26. now->day = localTime->tm_mday;
  27. now->hour = localTime->tm_hour;
  28. now->minute = localTime->tm_min;
  29. now->second = localTime->tm_sec;
  30. }
  31. int Str_Split(char *str, char c, char ***res) {
  32. int count = 1, i = 0, len;
  33. char *temp = str, *start, **arr;
  34. while (*temp != 0) {
  35. if (*temp == c) count++;
  36. temp++;
  37. }
  38. arr = (char **)malloc(count * sizeof(char *));
  39. temp = str;
  40. while (*temp != 0) {
  41. start = temp;
  42. while (*temp != c && *temp != 0) temp++;
  43. len = temp - start;
  44. arr[i] = (char *)malloc((len + 1) * sizeof(char));
  45. strncpy(arr[i], start, len);
  46. arr[i][len] = 0;
  47. if (*temp == c) temp++;
  48. i++;
  49. }
  50. *res = arr;
  51. return count;
  52. }
  53. void Free_Strings(char **list, int count) {
  54. do {
  55. free(list[--count]);
  56. } while (count);
  57. }
  58. int Uart_Open(char *location) {
  59. int fd = open(location, O_RDWR | O_NOCTTY | O_NDELAY);
  60. if (fd == False) return False;
  61. // 恢复串口为阻塞状态
  62. if (fcntl(fd, F_SETFL, 0) < 0) return False;
  63. // 测试是否为终端设备
  64. // if (0 == isatty(STDIN_FILENO)) return False;
  65. return fd;
  66. }
  67. int Uart_Set(int fd, int speed, int flow_ctrl, int data_bits, int stop_bits, int parity) {
  68. int i, status;
  69. int speed_arr[] = {B115200, B19200, B9600, B4800, B2400, B1200, B300};
  70. int name_arr[] = {115200, 19200, 9600, 4800, 2400, 1200, 300};
  71. struct termios options;
  72. if (tcgetattr(fd, &options) != 0) {
  73. AppErr("SetupSerial 1.");
  74. return False;
  75. }
  76. // 设置串口输入波特率和输出波特率
  77. for (i = 0; i < sizeof(speed_arr) / sizeof(int); i++) {
  78. if (speed == name_arr[i]) {
  79. cfsetispeed(&options, speed_arr[i]);
  80. cfsetospeed(&options, speed_arr[i]);
  81. }
  82. }
  83. // 修改控制模式,保证程序不会占用串口
  84. options.c_cflag |= CLOCAL;
  85. // 修改控制模式,使得能够从串口中读取输入数据
  86. options.c_cflag |= CREAD;
  87. // 设置数据流控制
  88. switch (flow_ctrl) {
  89. case 0: // 不使用流控制
  90. options.c_cflag &= ~CRTSCTS;
  91. break;
  92. case 1: // 使用硬件流控制
  93. options.c_cflag |= CRTSCTS;
  94. break;
  95. case 2: // 使用软件流控制
  96. options.c_cflag |= IXON | IXOFF | IXANY;
  97. break;
  98. }
  99. // 设置数据位
  100. // 屏蔽其他标志位
  101. options.c_cflag &= ~CSIZE;
  102. switch (data_bits) {
  103. case 5:
  104. options.c_cflag |= CS5;
  105. break;
  106. case 6:
  107. options.c_cflag |= CS6;
  108. break;
  109. case 7:
  110. options.c_cflag |= CS7;
  111. break;
  112. case 8:
  113. options.c_cflag |= CS8;
  114. break;
  115. default:
  116. AppErr("Unsupported data size.");
  117. return False;
  118. }
  119. // 设置校验位
  120. switch (parity) {
  121. case 'n':
  122. case 'N': // 无奇偶校验位。
  123. options.c_cflag &= ~PARENB;
  124. options.c_iflag &= ~INPCK;
  125. break;
  126. case 'o':
  127. case 'O': // 设置为奇校验
  128. options.c_cflag |= (PARODD | PARENB);
  129. options.c_iflag |= INPCK;
  130. break;
  131. case 'e':
  132. case 'E': // 设置为偶校验
  133. options.c_cflag |= PARENB;
  134. options.c_cflag &= ~PARODD;
  135. options.c_iflag |= INPCK;
  136. break;
  137. case 's':
  138. case 'S': // 设置为空格
  139. options.c_cflag &= ~PARENB;
  140. options.c_cflag &= ~CSTOPB;
  141. break;
  142. default:
  143. AppErr("Unsupported parity.");
  144. return False;
  145. }
  146. // 设置停止位
  147. switch (stop_bits) {
  148. case 1:
  149. options.c_cflag &= ~CSTOPB;
  150. break;
  151. case 2:
  152. options.c_cflag |= CSTOPB;
  153. break;
  154. default:
  155. AppErr("Unsupported stop bits.");
  156. return False;
  157. }
  158. // 修改输出模式,原始数据输出
  159. options.c_oflag &= ~OPOST;
  160. options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
  161. // 设置等待时间和最小接收字符
  162. options.c_cc[VTIME] = 1; /* 读取一个字符等待1*(1/10)s */
  163. options.c_cc[VMIN] = 1; /* 读取字符的最少个数为1 */
  164. // 如果发生数据溢出,接收数据,但是不再读取 刷新收到的数据但是不读
  165. tcflush(fd, TCIFLUSH);
  166. // 激活配置 (将修改后的termios数据设置到串口中)
  167. if (tcsetattr(fd, TCSANOW, &options) != 0) {
  168. AppErr("com set error!");
  169. return False;
  170. }
  171. return True;
  172. }
  173. int Uart_Recv(int fd, char *rcv_buf, int data_len) {
  174. fd_set fs_read;
  175. FD_ZERO(&fs_read);
  176. FD_SET(fd, &fs_read);
  177. return read(fd, rcv_buf, data_len);
  178. }
  179. int Get_Mac(char *mac, int limit) {
  180. struct ifreq ifreq;
  181. int sock;
  182. if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) return False;
  183. strcpy(ifreq.ifr_name, "eth0"); // Current eth0 only
  184. if (ioctl(sock, SIOCGIFHWADDR, &ifreq) < 0) return False;
  185. return snprintf(
  186. mac, limit, "%X%X%X%X%X%X", (unsigned char)ifreq.ifr_hwaddr.sa_data[0],
  187. (unsigned char)ifreq.ifr_hwaddr.sa_data[1], (unsigned char)ifreq.ifr_hwaddr.sa_data[2],
  188. (unsigned char)ifreq.ifr_hwaddr.sa_data[3], (unsigned char)ifreq.ifr_hwaddr.sa_data[4],
  189. (unsigned char)ifreq.ifr_hwaddr.sa_data[5]
  190. );
  191. }
  192. int main(int count, char **args) {
  193. Time now;
  194. int ErrNo, UartFd, UartReadSize, SocketFd, SockReadSize, SockSendSize, tmp_;
  195. char MacAddr[18], SockReadBuff[BuffSize], SockSendBuff[BuffSize], UartRecvBuff[BuffSize], **SplitList, DeviceId[32];
  196. LogOn = count > 1;
  197. // 打开串口Uart
  198. UartFd = Uart_Open("/dev/ttyS0");
  199. if (UartFd == False) {
  200. AppErr("Failed To Open Uart.");
  201. return False;
  202. }
  203. do {
  204. ErrNo = Uart_Set(UartFd, 115200, 0, 8, 1, 'N');
  205. } while (ErrNo == False || UartFd == False);
  206. AppLog("Uart opened.");
  207. // 阻塞式连接TCP
  208. struct sockaddr_in sin;
  209. bzero(&sin, sizeof(sin));
  210. sin.sin_family = AF_INET;
  211. inet_pton(AF_INET, "47.98.40.154", &sin.sin_addr);
  212. sin.sin_port = htons(10023);
  213. SocketFd = socket(AF_INET, SOCK_STREAM, 0);
  214. connect(SocketFd, (const struct sockaddr *)&sin, sizeof(sin));
  215. AppLog("Connection established at: 47.98.40.154:10023/tcp.\n");
  216. // init message exchange
  217. if (Get_Mac(MacAddr, 18) > 0) {
  218. AppLog("Mac Addr: <%s>", MacAddr);
  219. } else {
  220. AppErr("Failed To Get Mac Addr.");
  221. close(UartFd);
  222. return False;
  223. }
  224. memset(SockSendBuff, 0, BuffSize);
  225. SockSendSize = sprintf(SockSendBuff, "hm+%s+1+7+end", MacAddr);
  226. AppLog("first message send: %s", SockSendBuff);
  227. write(SocketFd, SockSendBuff, SockSendSize);
  228. SockReadSize = read(SocketFd, SockReadBuff, BuffSize);
  229. SockReadBuff[SockReadSize] = 0;
  230. AppLog("first message received: %s", SockReadBuff);
  231. tmp_ = Str_Split(SockReadBuff, '+', &SplitList);
  232. strcpy(DeviceId, SplitList[3]);
  233. Free_Strings(SplitList, tmp_);
  234. AppLog("get <Device Id> = <%s> from handshake.\n", DeviceId);
  235. // 循环读串口数据
  236. memset(SockSendBuff, 0, BuffSize);
  237. while (1) {
  238. UartReadSize = Uart_Recv(UartFd, UartRecvBuff, BuffSize);
  239. if (UartReadSize > 0) {
  240. UartRecvBuff[UartReadSize] = 0;
  241. AppLog("got uart data: [%s]", UartRecvBuff);
  242. strcat(SockSendBuff, UartRecvBuff);
  243. if (strstr(UartRecvBuff, "end")) {
  244. AppLog("Uart Packet: [%s]", SockSendBuff);
  245. tmp_ = Str_Split(SockSendBuff, '+', &SplitList);
  246. Now_Time(&now);
  247. SockSendSize = sprintf(
  248. SockSendBuff, "%s+%s+%s+%s+0+0+%s+%s+%d%02d%02d%02d%02d%02d+1.0#%s#%s+%s+%s",
  249. SplitList[0], DeviceId, SplitList[2], SplitList[4], SplitList[5], SplitList[6],
  250. now.year, now.month, now.day, now.hour, now.minute, now.second,
  251. SplitList[7], SplitList[3], SplitList[8], SplitList[9]
  252. );
  253. SockSendBuff[SockSendSize] = 0;
  254. write(SocketFd, SockSendBuff, SockSendSize);
  255. AppLog(" |=> Being Send: [%s]\n", SockSendBuff);
  256. Free_Strings(SplitList, tmp_);
  257. memset(SockSendBuff, 0, BuffSize);
  258. }
  259. }
  260. }
  261. close(UartFd);
  262. }