123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- #ifndef _LIBSVM_H
- #define _LIBSVM_H
- #define LIBSVM_VERSION 332
- extern int libsvm_version;
- struct svm_node {
- int index;
- double value;
- };
- struct svm_problem {
- int l;
- double *y;
- struct svm_node **x;
- };
- enum {
- C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR
- }; /* svm_type */
- enum {
- LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED
- }; /* kernel_type */
- struct svm_parameter {
- int svm_type;
- int kernel_type;
- int degree; /* for poly */
- double gamma; /* for poly/rbf/sigmoid */
- double coef0; /* for poly/sigmoid */
- /* these are for training only */
- double cache_size; /* in MB */
- double eps; /* stopping criteria */
- double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
- int nr_weight; /* for C_SVC */
- int *weight_label; /* for C_SVC */
- double *weight; /* for C_SVC */
- double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
- double p; /* for EPSILON_SVR */
- int shrinking; /* use the shrinking heuristics */
- int probability; /* do probability estimates */
- };
- //
- // svm_model
- //
- struct svm_model {
- struct svm_parameter param; /* parameter */
- int nr_class; /* number of classes, = 2 in regression/one class svm */
- int l; /* total #SV */
- struct svm_node **SV; /* SVs (SV[l]) */
- double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
- double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */
- double *probA; /* pariwise probability information */
- double *probB;
- double *prob_density_marks; /* probability information for ONE_CLASS */
- int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
- /* for classification only */
- int *label; /* label of each class (label[k]) */
- int *nSV; /* number of SVs for each class (nSV[k]) */
- /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
- /* XXX */
- int free_sv; /* 1 if svm_model is created by svm_load_model*/
- /* 0 if svm_model is created by svm_train */
- };
- struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
- void svm_cross_validation(
- const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target
- );
- int svm_save_model(const char *model_file_name, const struct svm_model *model);
- struct svm_model *svm_load_model(const char *model_file_name);
- int svm_get_svm_type(const struct svm_model *model);
- int svm_get_nr_class(const struct svm_model *model);
- void svm_get_labels(const struct svm_model *model, int *label);
- void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
- int svm_get_nr_sv(const struct svm_model *model);
- double svm_get_svr_probability(const struct svm_model *model);
- double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double *dec_values);
- double svm_predict(const struct svm_model *model, const struct svm_node *x);
- double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double *prob_estimates);
- void svm_free_model_content(struct svm_model *model_ptr);
- void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
- void svm_destroy_param(struct svm_parameter *param);
- const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
- int svm_check_probability_model(const struct svm_model *model);
- void svm_set_print_string_function(void (*print_func)(const char *));
- #endif
|