123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <ctype.h>
- #include <errno.h>
- #include "svm.h"
- #define Malloc(type, n) (type *)malloc((n)*sizeof(type))
- void print_null(const char *s) {}
- void exit_with_help() {
- printf(
- "Usage: svm-train [options] training_set_file [model_file]\n"
- "options:\n"
- "-s svm_type : set type of SVM (default 0)\n"
- " 0 -- C-SVC (multi-class classification)\n"
- " 1 -- nu-SVC (multi-class classification)\n"
- " 2 -- one-class SVM\n"
- " 3 -- epsilon-SVR (regression)\n"
- " 4 -- nu-SVR (regression)\n"
- "-t kernel_type : set type of kernel function (default 2)\n"
- " 0 -- linear: u'*v\n"
- " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
- " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
- " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
- " 4 -- precomputed kernel (kernel values in training_set_file)\n"
- "-d degree : set degree in kernel function (default 3)\n"
- "-g gamma : set gamma in kernel function (default 1/num_features)\n"
- "-r coef0 : set coef0 in kernel function (default 0)\n"
- "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
- "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
- "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
- "-m cachesize : set cache memory size in MB (default 100)\n"
- "-e epsilon : set tolerance of termination criterion (default 0.001)\n"
- "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
- "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
- "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
- "-v n: n-fold cross validation mode\n"
- "-q : quiet mode (no outputs)\n"
- );
- exit(1);
- }
- void exit_input_error(int line_num) {
- fprintf(stderr, "Wrong input format at line %d\n", line_num);
- exit(1);
- }
- void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
- void read_problem(const char *filename);
- void do_cross_validation();
- struct svm_parameter param; // set by parse_command_line
- struct svm_problem prob; // set by read_problem
- struct svm_model *model;
- struct svm_node *x_space;
- int cross_validation;
- int nr_fold;
- static char *line = NULL;
- static int max_line_len;
- static char *readline(FILE *input) {
- int len;
- if (fgets(line, max_line_len, input) == NULL)
- return NULL;
- while (strrchr(line, '\n') == NULL) {
- max_line_len *= 2;
- line = (char *) realloc(line, max_line_len);
- len = (int) strlen(line);
- if (fgets(line + len, max_line_len - len, input) == NULL)
- break;
- }
- return line;
- }
- int main(int argc, char **argv) {
- char input_file_name[1024];
- char model_file_name[1024];
- const char *error_msg;
- parse_command_line(argc, argv, input_file_name, model_file_name);
- read_problem(input_file_name);
- error_msg = svm_check_parameter(&prob, ¶m);
- if (error_msg) {
- fprintf(stderr, "ERROR: %s\n", error_msg);
- exit(1);
- }
- if (cross_validation) {
- do_cross_validation();
- } else {
- model = svm_train(&prob, ¶m);
- if (svm_save_model(model_file_name, model)) {
- fprintf(stderr, "can't save model to file %s\n", model_file_name);
- exit(1);
- }
- svm_free_and_destroy_model(&model);
- }
- svm_destroy_param(¶m);
- free(prob.y);
- free(prob.x);
- free(x_space);
- free(line);
- return 0;
- }
- void do_cross_validation() {
- int i;
- int total_correct = 0;
- double total_error = 0;
- double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
- double *target = Malloc(double, prob.l);
- svm_cross_validation(&prob, ¶m, nr_fold, target);
- if (param.svm_type == EPSILON_SVR ||
- param.svm_type == NU_SVR) {
- for (i = 0; i < prob.l; i++) {
- double y = prob.y[i];
- double v = target[i];
- total_error += (v - y) * (v - y);
- sumv += v;
- sumy += y;
- sumvv += v * v;
- sumyy += y * y;
- sumvy += v * y;
- }
- printf("Cross Validation Mean squared error = %g\n", total_error / prob.l);
- printf("Cross Validation Squared correlation coefficient = %g\n",
- ((prob.l * sumvy - sumv * sumy) * (prob.l * sumvy - sumv * sumy)) /
- ((prob.l * sumvv - sumv * sumv) * (prob.l * sumyy - sumy * sumy))
- );
- } else {
- for (i = 0; i < prob.l; i++)
- if (target[i] == prob.y[i])
- ++total_correct;
- printf("Cross Validation Accuracy = %g%%\n", 100.0 * total_correct / prob.l);
- }
- free(target);
- }
- void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name) {
- int i;
- void (*print_func)(const char *) = NULL; // default printing to stdout
- // default values
- param.svm_type = C_SVC;
- param.kernel_type = RBF;
- param.degree = 3;
- param.gamma = 0; // 1/num_features
- param.coef0 = 0;
- param.nu = 0.5;
- param.cache_size = 100;
- param.C = 1;
- param.eps = 1e-3;
- param.p = 0.1;
- param.shrinking = 1;
- param.probability = 0;
- param.nr_weight = 0;
- param.weight_label = NULL;
- param.weight = NULL;
- cross_validation = 0;
- // parse options
- for (i = 1; i < argc; i++) {
- if (argv[i][0] != '-') break;
- if (++i >= argc)
- exit_with_help();
- switch (argv[i - 1][1]) {
- case 's':
- param.svm_type = atoi(argv[i]);
- break;
- case 't':
- param.kernel_type = atoi(argv[i]);
- break;
- case 'd':
- param.degree = atoi(argv[i]);
- break;
- case 'g':
- param.gamma = atof(argv[i]);
- break;
- case 'r':
- param.coef0 = atof(argv[i]);
- break;
- case 'n':
- param.nu = atof(argv[i]);
- break;
- case 'm':
- param.cache_size = atof(argv[i]);
- break;
- case 'c':
- param.C = atof(argv[i]);
- break;
- case 'e':
- param.eps = atof(argv[i]);
- break;
- case 'p':
- param.p = atof(argv[i]);
- break;
- case 'h':
- param.shrinking = atoi(argv[i]);
- break;
- case 'b':
- param.probability = atoi(argv[i]);
- break;
- case 'q':
- print_func = &print_null;
- i--;
- break;
- case 'v':
- cross_validation = 1;
- nr_fold = atoi(argv[i]);
- if (nr_fold < 2) {
- fprintf(stderr, "n-fold cross validation: n must >= 2\n");
- exit_with_help();
- }
- break;
- case 'w':
- ++param.nr_weight;
- param.weight_label = (int *) realloc(param.weight_label, sizeof(int) * param.nr_weight);
- param.weight = (double *) realloc(param.weight, sizeof(double) * param.nr_weight);
- param.weight_label[param.nr_weight - 1] = atoi(&argv[i - 1][2]);
- param.weight[param.nr_weight - 1] = atof(argv[i]);
- break;
- default:
- fprintf(stderr, "Unknown option: -%c\n", argv[i - 1][1]);
- exit_with_help();
- }
- }
- svm_set_print_string_function(print_func);
- // determine filenames
- if (i >= argc)
- exit_with_help();
- strcpy(input_file_name, argv[i]);
- if (i < argc - 1)
- strcpy(model_file_name, argv[i + 1]);
- else {
- char *p = strrchr(argv[i], '/');
- if (p == NULL)
- p = argv[i];
- else
- ++p;
- sprintf(model_file_name, "%s.model", p);
- }
- }
- // read in a problem (in svmlight format)
- void read_problem(const char *filename) {
- int max_index, inst_max_index, i;
- size_t elements, j;
- FILE *fp = fopen(filename, "r");
- char *endptr;
- char *idx, *val, *label;
- if (fp == NULL) {
- fprintf(stderr, "can't open input file %s\n", filename);
- exit(1);
- }
- prob.l = 0;
- elements = 0;
- max_line_len = 1024;
- line = Malloc(char, max_line_len);
- while (readline(fp) != NULL) {
- char *p = strtok(line, " \t"); // label
- // features
- while (1) {
- p = strtok(NULL, " \t");
- if (p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
- break;
- ++elements;
- }
- ++elements;
- ++prob.l;
- }
- rewind(fp);
- prob.y = Malloc(double, prob.l);
- prob.x = Malloc(struct svm_node *, prob.l);
- x_space = Malloc(struct svm_node, elements);
- max_index = 0;
- j = 0;
- for (i = 0; i < prob.l; i++) {
- inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
- readline(fp);
- prob.x[i] = &x_space[j];
- label = strtok(line, " \t\n");
- if (label == NULL) // empty line
- exit_input_error(i + 1);
- prob.y[i] = strtod(label, &endptr);
- if (endptr == label || *endptr != '\0')
- exit_input_error(i + 1);
- while (1) {
- idx = strtok(NULL, ":");
- val = strtok(NULL, " \t");
- if (val == NULL)
- break;
- errno = 0;
- x_space[j].index = (int) strtol(idx, &endptr, 10);
- if (endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
- exit_input_error(i + 1);
- else
- inst_max_index = x_space[j].index;
- errno = 0;
- x_space[j].value = strtod(val, &endptr);
- if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
- exit_input_error(i + 1);
- ++j;
- }
- if (inst_max_index > max_index)
- max_index = inst_max_index;
- x_space[j++].index = -1;
- }
- if (param.gamma == 0 && max_index > 0)
- param.gamma = 1.0 / max_index;
- if (param.kernel_type == PRECOMPUTED)
- for (i = 0; i < prob.l; i++) {
- if (prob.x[i][0].index != 0) {
- fprintf(stderr, "Wrong input format: first column must be 0:sample_serial_number\n");
- exit(1);
- }
- if ((int) prob.x[i][0].value <= 0 || (int) prob.x[i][0].value > max_index) {
- fprintf(stderr, "Wrong input format: sample_serial_number out of range\n");
- exit(1);
- }
- }
- fclose(fp);
- }
|