#include #include #include #include #include #include #include #include #include #include "svm.h" #ifdef _OPENMP #include #endif int libsvm_version = LIBSVM_VERSION; typedef float Qfloat; typedef signed char schar; #ifndef min template static inline T min(T x, T y) { return (x < y) ? x : y; } #endif #ifndef max template static inline T max(T x, T y) { return (x > y) ? x : y; } #endif template static inline void swap(T &x, T &y) { T t = x; x = y; y = t; } template static inline void clone(T *&dst, S *src, int n) { dst = new T[n]; memcpy((void *) dst, (void *) src, sizeof(T) * n); } static inline double powi(double base, int times) { double tmp = base, ret = 1.0; for (int t = times; t > 0; t /= 2) { if (t % 2 == 1) ret *= tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type, n) (type *)malloc((n)*sizeof(type)) static void print_string_stdout(const char *s) { fputs(s, stdout); fflush(stdout); } static void (*svm_print_string)(const char *) = &print_string_stdout; #if 1 static void info(const char *fmt, ...) { char buf[BUFSIZ]; va_list ap; va_start(ap, fmt); vsprintf(buf, fmt, ap); va_end(ap); (*svm_print_string)(buf); } #else static void info(const char *fmt,...) {} #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l, long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_, long int size_) : l(l_), size(size_) { head = (head_t *) calloc(l, sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for (head_t *h = lru_head.next; h != &lru_head; h = h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if (h->len) lru_delete(h); int more = len - h->len; if (more > 0) { // free old space while (size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *) realloc(h->data, sizeof(Qfloat) * len); size -= more; swap(h->len, len); } lru_insert(h); *data = h->data; return len; } void Cache::swap_index(int i, int j) { if (i == j) return; if (head[i].len) lru_delete(&head[i]); if (head[j].len) lru_delete(&head[j]); swap(head[i].data, head[j].data); swap(head[i].len, head[j].len); if (head[i].len) lru_insert(&head[i]); if (head[j].len) lru_insert(&head[j]); if (i > j) swap(i, j); for (head_t *h = lru_head.next; h != &lru_head; h = h->next) { if (h->len > i) { if (h->len > j) swap(h->data[i], h->data[j]); else { // give up lru_delete(h); free(h->data); size += h->len; h->data = 0; h->len = 0; } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel : public QMatrix { public: Kernel(int l, svm_node *const *x, const svm_parameter ¶m); virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter ¶m); virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i], x[j]); if (x_square) swap(x_square[i], x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x; double *x_square; // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i], x[j]); } double kernel_poly(int i, int j) const { return powi(gamma * dot(x[i], x[j]) + coef0, degree); } double kernel_rbf(int i, int j) const { return exp(-gamma * (x_square[i] + x_square[j] - 2 * dot(x[i], x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma * dot(x[i], x[j]) + coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int) (x[j][0].value)].value; } }; Kernel::Kernel(int l, svm_node *const *x_, const svm_parameter ¶m) : kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { switch (kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x, x_, l); if (kernel_type == RBF) { x_square = new double[l]; for (int i = 0; i < l; i++) x_square[i] = dot(x[i], x[i]); } else x_square = 0; } Kernel::~Kernel() { delete[] x; delete[] x_square; } double Kernel::dot(const svm_node *px, const svm_node *py) { double sum = 0; while (px->index != -1 && py->index != -1) { if (px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if (px->index > py->index) ++py; else ++px; } } return sum; } double Kernel::k_function(const svm_node *x, const svm_node *y, const svm_parameter ¶m) { switch (param.kernel_type) { case LINEAR: return dot(x, y); case POLY: return powi(param.gamma * dot(x, y) + param.coef0, param.degree); case RBF: { double sum = 0; while (x->index != -1 && y->index != -1) { if (x->index == y->index) { double d = x->value - y->value; sum += d * d; ++x; ++y; } else { if (x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while (x->index != -1) { sum += x->value * x->value; ++x; } while (y->index != -1) { sum += y->value * y->value; ++y; } return exp(-param.gamma * sum); } case SIGMOID: return tanh(param.gamma * dot(x, y) + param.coef0); case PRECOMPUTED: //x: test (validation), y: SV return x[(int) (y->value)].value; default: return 0; // Unreachable } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { public: Solver() {}; virtual ~Solver() {}; struct SolutionInfo { double obj; double rho; double upper_bound_p; double upper_bound_n; double r; // for Solver_NU }; void Solve(int l, const QMatrix &Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo *si, int shrinking); protected: int active_size; schar *y; double *G; // gradient of objective function enum { LOWER_BOUND, UPPER_BOUND, FREE }; char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double *alpha; const QMatrix *Q; const double *QD; double eps; double Cp, Cn; double *p; int *active_set; double *G_bar; // gradient, if we treat free variables as 0 int l; bool unshrink; // XXX double get_C(int i) { return (y[i] > 0) ? Cp : Cn; } void update_alpha_status(int i) { if (alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if (alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } bool is_free(int i) { return alpha_status[i] == FREE; } void swap_index(int i, int j); void reconstruct_gradient(); virtual int select_working_set(int &i, int &j); virtual double calculate_rho(); virtual void do_shrinking(); private: bool be_shrunk(int i, double Gmax1, double Gmax2); }; void Solver::swap_index(int i, int j) { Q->swap_index(i, j); swap(y[i], y[j]); swap(G[i], G[j]); swap(alpha_status[i], alpha_status[j]); swap(alpha[i], alpha[j]); swap(p[i], p[j]); swap(active_set[i], active_set[j]); swap(G_bar[i], G_bar[j]); } void Solver::reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if (active_size == l) return; int i, j; int nr_free = 0; for (j = active_size; j < l; j++) G[j] = G_bar[j] + p[j]; for (j = 0; j < active_size; j++) if (is_free(j)) nr_free++; if (2 * nr_free < active_size) info("\nWARNING: using -h 0 may be faster\n"); if (nr_free * l > 2 * active_size * (l - active_size)) { for (i = active_size; i < l; i++) { const Qfloat *Q_i = Q->get_Q(i, active_size); for (j = 0; j < active_size; j++) if (is_free(j)) G[i] += alpha[j] * Q_i[j]; } } else { for (i = 0; i < active_size; i++) if (is_free(i)) { const Qfloat *Q_i = Q->get_Q(i, l); double alpha_i = alpha[i]; for (j = active_size; j < l; j++) G[j] += alpha_i * Q_i[j]; } } } void Solver::Solve(int l, const QMatrix &Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo *si, int shrinking) { this->l = l; this->Q = &Q; QD = Q.get_QD(); clone(p, p_, l); clone(y, y_, l); clone(alpha, alpha_, l); this->Cp = Cp; this->Cn = Cn; this->eps = eps; unshrink = false; // initialize alpha_status { alpha_status = new char[l]; for (int i = 0; i < l; i++) update_alpha_status(i); } // initialize active set (for shrinking) { active_set = new int[l]; for (int i = 0; i < l; i++) active_set[i] = i; active_size = l; } // initialize gradient { G = new double[l]; G_bar = new double[l]; int i; for (i = 0; i < l; i++) { G[i] = p[i]; G_bar[i] = 0; } for (i = 0; i < l; i++) if (!is_lower_bound(i)) { const Qfloat *Q_i = Q.get_Q(i, l); double alpha_i = alpha[i]; int j; for (j = 0; j < l; j++) G[j] += alpha_i * Q_i[j]; if (is_upper_bound(i)) for (j = 0; j < l; j++) G_bar[j] += get_C(i) * Q_i[j]; } } // optimization step int iter = 0; int max_iter = max(10000000, l > INT_MAX / 100 ? INT_MAX : 100 * l); int counter = min(l, 1000) + 1; while (iter < max_iter) { // show progress and do shrinking if (--counter == 0) { counter = min(l, 1000); if (shrinking) do_shrinking(); info("."); } int i, j; if (select_working_set(i, j) != 0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; info("*"); if (select_working_set(i, j) != 0) break; else counter = 1; // do shrinking next iteration } ++iter; // update alpha[i] and alpha[j], handle bounds carefully const Qfloat *Q_i = Q.get_Q(i, active_size); const Qfloat *Q_j = Q.get_Q(j, active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if (y[i] != y[j]) { double quad_coef = QD[i] + QD[j] + 2 * Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (-G[i] - G[j]) / quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if (diff > 0) { if (alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if (alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if (diff > C_i - C_j) { if (alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if (alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = QD[i] + QD[j] - 2 * Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (G[i] - G[j]) / quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if (sum > C_i) { if (alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if (alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if (sum > C_j) { if (alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if (alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for (int k = 0; k < active_size; k++) { G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; } // update alpha_status and G_bar { bool ui = is_upper_bound(i); bool uj = is_upper_bound(j); update_alpha_status(i); update_alpha_status(j); int k; if (ui != is_upper_bound(i)) { Q_i = Q.get_Q(i, l); if (ui) for (k = 0; k < l; k++) G_bar[k] -= C_i * Q_i[k]; else for (k = 0; k < l; k++) G_bar[k] += C_i * Q_i[k]; } if (uj != is_upper_bound(j)) { Q_j = Q.get_Q(j, l); if (uj) for (k = 0; k < l; k++) G_bar[k] -= C_j * Q_j[k]; else for (k = 0; k < l; k++) G_bar[k] += C_j * Q_j[k]; } } } if (iter >= max_iter) { if (active_size < l) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); active_size = l; info("*"); } fprintf(stderr, "\nWARNING: reaching max number of iterations\n"); } // calculate rho si->rho = calculate_rho(); // calculate objective value { double v = 0; int i; for (i = 0; i < l; i++) v += alpha[i] * (G[i] + p[i]); si->obj = v / 2; } // put back the solution { for (int i = 0; i < l; i++) alpha_[active_set[i]] = alpha[i]; } // juggle everything back /*{ for(int i=0;iupper_bound_p = Cp; si->upper_bound_n = Cn; info("\noptimization finished, #iter = %d\n", iter); delete[] p; delete[] y; delete[] alpha; delete[] alpha_status; delete[] active_set; delete[] G; delete[] G_bar; } // return 1 if already optimal, return 0 otherwise int Solver::select_working_set(int &out_i, int &out_j) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for (int t = 0; t < active_size; t++) if (y[t] == +1) { if (!is_upper_bound(t)) if (-G[t] >= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if (!is_lower_bound(t)) if (G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; const Qfloat *Q_i = NULL; if (i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q->get_Q(i, active_size); for (int j = 0; j < active_size; j++) { if (y[j] == +1) { if (!is_lower_bound(j)) { double grad_diff = Gmax + G[j]; if (G[j] >= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i] + QD[j] - 2.0 * y[i] * Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff * grad_diff) / quad_coef; else obj_diff = -(grad_diff * grad_diff) / TAU; if (obj_diff <= obj_diff_min) { Gmin_idx = j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff = Gmax - G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i] + QD[j] + 2.0 * y[i] * Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff * grad_diff) / quad_coef; else obj_diff = -(grad_diff * grad_diff) / TAU; if (obj_diff <= obj_diff_min) { Gmin_idx = j; obj_diff_min = obj_diff; } } } } } if (Gmax + Gmax2 < eps || Gmin_idx == -1) return 1; out_i = Gmax_idx; out_j = Gmin_idx; return 0; } bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) { if (is_upper_bound(i)) { if (y[i] == +1) return (-G[i] > Gmax1); else return (-G[i] > Gmax2); } else if (is_lower_bound(i)) { if (y[i] == +1) return (G[i] > Gmax2); else return (G[i] > Gmax1); } else return (false); } void Solver::do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for (i = 0; i < active_size; i++) { if (y[i] == +1) { if (!is_upper_bound(i)) { if (-G[i] >= Gmax1) Gmax1 = -G[i]; } if (!is_lower_bound(i)) { if (G[i] >= Gmax2) Gmax2 = G[i]; } } else { if (!is_upper_bound(i)) { if (-G[i] >= Gmax2) Gmax2 = -G[i]; } if (!is_lower_bound(i)) { if (G[i] >= Gmax1) Gmax1 = G[i]; } } } if (unshrink == false && Gmax1 + Gmax2 <= eps * 10) { unshrink = true; reconstruct_gradient(); active_size = l; info("*"); } for (i = 0; i < active_size; i++) if (be_shrunk(i, Gmax1, Gmax2)) { active_size--; while (active_size > i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i, active_size); break; } active_size--; } } } double Solver::calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for (int i = 0; i < active_size; i++) { double yG = y[i] * G[i]; if (is_upper_bound(i)) { if (y[i] == -1) ub = min(ub, yG); else lb = max(lb, yG); } else if (is_lower_bound(i)) { if (y[i] == +1) ub = min(ub, yG); else lb = max(lb, yG); } else { ++nr_free; sum_free += yG; } } if (nr_free > 0) r = sum_free / nr_free; else r = (ub + lb) / 2; return r; } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // class Solver_NU : public Solver { public: Solver_NU() {} void Solve(int l, const QMatrix &Q, const double *p, const schar *y, double *alpha, double Cp, double Cn, double eps, SolutionInfo *si, int shrinking) { this->si = si; Solver::Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking); } private: SolutionInfo *si; int select_working_set(int &i, int &j); double calculate_rho(); bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); void do_shrinking(); }; // return 1 if already optimal, return 0 otherwise int Solver_NU::select_working_set(int &out_i, int &out_j) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for (int t = 0; t < active_size; t++) if (y[t] == +1) { if (!is_upper_bound(t)) if (-G[t] >= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if (!is_lower_bound(t)) if (G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; const Qfloat *Q_ip = NULL; const Qfloat *Q_in = NULL; if (ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q->get_Q(ip, active_size); if (in != -1) Q_in = Q->get_Q(in, active_size); for (int j = 0; j < active_size; j++) { if (y[j] == +1) { if (!is_lower_bound(j)) { double grad_diff = Gmaxp + G[j]; if (G[j] >= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[ip] + QD[j] - 2 * Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff * grad_diff) / quad_coef; else obj_diff = -(grad_diff * grad_diff) / TAU; if (obj_diff <= obj_diff_min) { Gmin_idx = j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff = Gmaxn - G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[in] + QD[j] - 2 * Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff * grad_diff) / quad_coef; else obj_diff = -(grad_diff * grad_diff) / TAU; if (obj_diff <= obj_diff_min) { Gmin_idx = j; obj_diff_min = obj_diff; } } } } } if (max(Gmaxp + Gmaxp2, Gmaxn + Gmaxn2) < eps || Gmin_idx == -1) return 1; if (y[Gmin_idx] == +1) out_i = Gmaxp_idx; else out_i = Gmaxn_idx; out_j = Gmin_idx; return 0; } bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if (is_upper_bound(i)) { if (y[i] == +1) return (-G[i] > Gmax1); else return (-G[i] > Gmax4); } else if (is_lower_bound(i)) { if (y[i] == +1) return (G[i] > Gmax2); else return (G[i] > Gmax3); } else return (false); } void Solver_NU::do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for (i = 0; i < active_size; i++) { if (!is_upper_bound(i)) { if (y[i] == +1) { if (-G[i] > Gmax1) Gmax1 = -G[i]; } else if (-G[i] > Gmax4) Gmax4 = -G[i]; } if (!is_lower_bound(i)) { if (y[i] == +1) { if (G[i] > Gmax2) Gmax2 = G[i]; } else if (G[i] > Gmax3) Gmax3 = G[i]; } } if (unshrink == false && max(Gmax1 + Gmax2, Gmax3 + Gmax4) <= eps * 10) { unshrink = true; reconstruct_gradient(); active_size = l; } for (i = 0; i < active_size; i++) if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) { active_size--; while (active_size > i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i, active_size); break; } active_size--; } } } double Solver_NU::calculate_rho() { int nr_free1 = 0, nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for (int i = 0; i < active_size; i++) { if (y[i] == +1) { if (is_upper_bound(i)) lb1 = max(lb1, G[i]); else if (is_lower_bound(i)) ub1 = min(ub1, G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if (is_upper_bound(i)) lb2 = max(lb2, G[i]); else if (is_lower_bound(i)) ub2 = min(ub2, G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1, r2; if (nr_free1 > 0) r1 = sum_free1 / nr_free1; else r1 = (ub1 + lb1) / 2; if (nr_free2 > 0) r2 = sum_free2 / nr_free2; else r2 = (ub2 + lb2) / 2; si->r = (r1 + r2) / 2; return (r1 - r2) / 2; } // // Q matrices for various formulations // class SVC_Q : public Kernel { public: SVC_Q(const svm_problem &prob, const svm_parameter ¶m, const schar *y_) : Kernel(prob.l, prob.x, param) { clone(y, y_, prob.l); cache = new Cache(prob.l, (long int) (param.cache_size * (1 << 20))); QD = new double[prob.l]; for (int i = 0; i < prob.l; i++) QD[i] = (this->*kernel_function)(i, i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if ((start = cache->get_data(i, &data, len)) < len) { #ifdef _OPENMP #pragma omp parallel for private(j) schedule(guided) #endif for (j = start; j < len; j++) data[j] = (Qfloat) (y[i] * y[j] * (this->*kernel_function)(i, j)); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i, j); Kernel::swap_index(i, j); swap(y[i], y[j]); swap(QD[i], QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; } private: schar *y; Cache *cache; double *QD; }; class ONE_CLASS_Q : public Kernel { public: ONE_CLASS_Q(const svm_problem &prob, const svm_parameter ¶m) : Kernel(prob.l, prob.x, param) { cache = new Cache(prob.l, (long int) (param.cache_size * (1 << 20))); QD = new double[prob.l]; for (int i = 0; i < prob.l; i++) QD[i] = (this->*kernel_function)(i, i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if ((start = cache->get_data(i, &data, len)) < len) { for (j = start; j < len; j++) data[j] = (Qfloat) (this->*kernel_function)(i, j); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i, j); Kernel::swap_index(i, j); swap(QD[i], QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; } private: Cache *cache; double *QD; }; class SVR_Q : public Kernel { public: SVR_Q(const svm_problem &prob, const svm_parameter ¶m) : Kernel(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l, (long int) (param.cache_size * (1 << 20))); QD = new double[2 * l]; sign = new schar[2 * l]; index = new int[2 * l]; for (int k = 0; k < l; k++) { sign[k] = 1; sign[k + l] = -1; index[k] = k; index[k + l] = k; QD[k] = (this->*kernel_function)(k, k); QD[k + l] = QD[k]; } buffer[0] = new Qfloat[2 * l]; buffer[1] = new Qfloat[2 * l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i], sign[j]); swap(index[i], index[j]); swap(QD[i], QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int j, real_i = index[i]; if (cache->get_data(real_i, &data, l) < l) { #ifdef _OPENMP #pragma omp parallel for private(j) schedule(guided) #endif for (j = 0; j < l; j++) data[j] = (Qfloat) (this->*kernel_function)(real_i, j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for (j = 0; j < len; j++) buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; return buf; } double *get_QD() const { return QD; } ~SVR_Q() { delete cache; delete[] sign; delete[] index; delete[] buffer[0]; delete[] buffer[1]; delete[] QD; } private: int l; Cache *cache; schar *sign; int *index; mutable int next_buffer; Qfloat *buffer[2]; double *QD; }; // // construct and solve various formulations // static void solve_c_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si, double Cp, double Cn) { int l = prob->l; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for (i = 0; i < l; i++) { alpha[i] = 0; minus_ones[i] = -1; if (prob->y[i] > 0) y[i] = +1; else y[i] = -1; } Solver s; s.Solve(l, SVC_Q(*prob, *param, y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha = 0; for (i = 0; i < l; i++) sum_alpha += alpha[i]; if (Cp == Cn) info("nu = %f\n", sum_alpha / (Cp * prob->l)); for (i = 0; i < l; i++) alpha[i] *= y[i]; delete[] minus_ones; delete[] y; } static void solve_nu_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si) { int i; int l = prob->l; double nu = param->nu; schar *y = new schar[l]; for (i = 0; i < l; i++) if (prob->y[i] > 0) y[i] = +1; else y[i] = -1; double sum_pos = nu * l / 2; double sum_neg = nu * l / 2; for (i = 0; i < l; i++) if (y[i] == +1) { alpha[i] = min(1.0, sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0, sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for (i = 0; i < l; i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob, *param, y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n", 1 / r); for (i = 0; i < l; i++) alpha[i] *= y[i] / r; si->rho /= r; si->obj /= (r * r); si->upper_bound_p = 1 / r; si->upper_bound_n = 1 / r; delete[] y; delete[] zeros; } static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si) { int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int) (param->nu * prob->l); // # of alpha's at upper bound for (i = 0; i < n; i++) alpha[i] = 1; if (n < prob->l) alpha[n] = param->nu * prob->l - n; for (i = n + 1; i < l; i++) alpha[i] = 0; for (i = 0; i < l; i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob, *param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones; } static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si) { int l = prob->l; double *alpha2 = new double[2 * l]; double *linear_term = new double[2 * l]; schar *y = new schar[2 * l]; int i; for (i = 0; i < l; i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i + l] = 0; linear_term[i + l] = param->p + prob->y[i]; y[i + l] = -1; } Solver s; s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; sum_alpha += fabs(alpha[i]); } info("nu = %f\n", sum_alpha / (param->C * l)); delete[] alpha2; delete[] linear_term; delete[] y; } static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si) { int l = prob->l; double C = param->C; double *alpha2 = new double[2 * l]; double *linear_term = new double[2 * l]; schar *y = new schar[2 * l]; int i; double sum = C * param->nu * l / 2; for (i = 0; i < l; i++) { alpha2[i] = alpha2[i + l] = min(sum, C); sum -= alpha2[i]; linear_term[i] = -prob->y[i]; y[i] = 1; linear_term[i + l] = prob->y[i]; y[i + l] = -1; } Solver_NU s; s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n", -si->r); for (i = 0; i < l; i++) alpha[i] = alpha2[i] - alpha2[i + l]; delete[] alpha2; delete[] linear_term; delete[] y; } // // decision_function // struct decision_function { double *alpha; double rho; }; static decision_function svm_train_one( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn) { double *alpha = Malloc(double, prob->l); Solver::SolutionInfo si; switch (param->svm_type) { case C_SVC: solve_c_svc(prob, param, alpha, &si, Cp, Cn); break; case NU_SVC: solve_nu_svc(prob, param, alpha, &si); break; case ONE_CLASS: solve_one_class(prob, param, alpha, &si); break; case EPSILON_SVR: solve_epsilon_svr(prob, param, alpha, &si); break; case NU_SVR: solve_nu_svr(prob, param, alpha, &si); break; } info("obj = %f, rho = %f\n", si.obj, si.rho); // output SVs int nSV = 0; int nBSV = 0; for (int i = 0; i < prob->l; i++) { if (fabs(alpha[i]) > 0) { ++nSV; if (prob->y[i] > 0) { if (fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if (fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n", nSV, nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f; } // Platt's binary SVM Probablistic Output: an improvement from Lin et al. static void sigmoid_train( int l, const double *dec_values, const double *labels, double &A, double &B) { double prior1 = 0, prior0 = 0; int i; for (i = 0; i < l; i++) if (labels[i] > 0) prior1 += 1; else prior0 += 1; int max_iter = 100; // Maximal number of iterations double min_step = 1e-10; // Minimal step taken in line search double sigma = 1e-12; // For numerically strict PD of Hessian double eps = 1e-5; double hiTarget = (prior1 + 1.0) / (prior1 + 2.0); double loTarget = 1 / (prior0 + 2.0); double *t = Malloc(double, l); double fApB, p, q, h11, h22, h21, g1, g2, det, dA, dB, gd, stepsize; double newA, newB, newf, d1, d2; int iter; // Initial Point and Initial Fun Value A = 0.0; B = log((prior0 + 1.0) / (prior1 + 1.0)); double fval = 0.0; for (i = 0; i < l; i++) { if (labels[i] > 0) t[i] = hiTarget; else t[i] = loTarget; fApB = dec_values[i] * A + B; if (fApB >= 0) fval += t[i] * fApB + log(1 + exp(-fApB)); else fval += (t[i] - 1) * fApB + log(1 + exp(fApB)); } for (iter = 0; iter < max_iter; iter++) { // Update Gradient and Hessian (use H' = H + sigma I) h11 = sigma; // numerically ensures strict PD h22 = sigma; h21 = 0.0; g1 = 0.0; g2 = 0.0; for (i = 0; i < l; i++) { fApB = dec_values[i] * A + B; if (fApB >= 0) { p = exp(-fApB) / (1.0 + exp(-fApB)); q = 1.0 / (1.0 + exp(-fApB)); } else { p = 1.0 / (1.0 + exp(fApB)); q = exp(fApB) / (1.0 + exp(fApB)); } d2 = p * q; h11 += dec_values[i] * dec_values[i] * d2; h22 += d2; h21 += dec_values[i] * d2; d1 = t[i] - p; g1 += dec_values[i] * d1; g2 += d1; } // Stopping Criteria if (fabs(g1) < eps && fabs(g2) < eps) break; // Finding Newton direction: -inv(H') * g det = h11 * h22 - h21 * h21; dA = -(h22 * g1 - h21 * g2) / det; dB = -(-h21 * g1 + h11 * g2) / det; gd = g1 * dA + g2 * dB; stepsize = 1; // Line Search while (stepsize >= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i = 0; i < l; i++) { fApB = dec_values[i] * newA + newB; if (fApB >= 0) newf += t[i] * fApB + log(1 + exp(-fApB)); else newf += (t[i] - 1) * fApB + log(1 + exp(fApB)); } // Check sufficient decrease if (newf < fval + 0.0001 * stepsize * gd) { A = newA; B = newB; fval = newf; break; } else stepsize = stepsize / 2.0; } if (stepsize < min_step) { info("Line search fails in two-class probability estimates\n"); break; } } if (iter >= max_iter) info("Reaching maximal iterations in two-class probability estimates\n"); free(t); } static double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value * A + B; // 1-p used later; avoid catastrophic cancellation if (fApB >= 0) return exp(-fApB) / (1.0 + exp(-fApB)); else return 1.0 / (1 + exp(fApB)); } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng to predict probabilities static void multiclass_probability(int k, double **r, double *p) { int t, j; int iter = 0, max_iter = max(100, k); double **Q = Malloc(double *, k); double *Qp = Malloc(double, k); double pQp, eps = 0.005 / k; for (t = 0; t < k; t++) { p[t] = 1.0 / k; // Valid if k = 1 Q[t] = Malloc(double, k); Q[t][t] = 0; for (j = 0; j < t; j++) { Q[t][t] += r[j][t] * r[j][t]; Q[t][j] = Q[j][t]; } for (j = t + 1; j < k; j++) { Q[t][t] += r[j][t] * r[j][t]; Q[t][j] = -r[j][t] * r[t][j]; } } for (iter = 0; iter < max_iter; iter++) { // stopping condition, recalculate QP,pQP for numerical accuracy pQp = 0; for (t = 0; t < k; t++) { Qp[t] = 0; for (j = 0; j < k; j++) Qp[t] += Q[t][j] * p[j]; pQp += p[t] * Qp[t]; } double max_error = 0; for (t = 0; t < k; t++) { double error = fabs(Qp[t] - pQp); if (error > max_error) max_error = error; } if (max_error < eps) break; for (t = 0; t < k; t++) { double diff = (-Qp[t] + pQp) / Q[t][t]; p[t] += diff; pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff); for (j = 0; j < k; j++) { Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff); p[j] /= (1 + diff); } } } if (iter >= max_iter) info("Exceeds max_iter in multiclass_prob\n"); for (t = 0; t < k; t++) free(Q[t]); free(Q); free(Qp); } // Using cross-validation decision values to get parameters for SVC probability estimates static void svm_binary_svc_probability( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn, double &probA, double &probB) { int i; int nr_fold = 5; int *perm = Malloc(int, prob->l); double *dec_values = Malloc(double, prob->l); // random shuffle for (i = 0; i < prob->l; i++) perm[i] = i; for (i = 0; i < prob->l; i++) { int j = i + rand() % (prob->l - i); swap(perm[i], perm[j]); } for (i = 0; i < nr_fold; i++) { int begin = i * prob->l / nr_fold; int end = (i + 1) * prob->l / nr_fold; int j, k; struct svm_problem subprob; subprob.l = prob->l - (end - begin); subprob.x = Malloc(struct svm_node*, subprob.l); subprob.y = Malloc(double, subprob.l); k = 0; for (j = 0; j < begin; j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for (j = end; j < prob->l; j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } int p_count = 0, n_count = 0; for (j = 0; j < k; j++) if (subprob.y[j] > 0) p_count++; else n_count++; if (p_count == 0 && n_count == 0) for (j = begin; j < end; j++) dec_values[perm[j]] = 0; else if (p_count > 0 && n_count == 0) for (j = begin; j < end; j++) dec_values[perm[j]] = 1; else if (p_count == 0 && n_count > 0) for (j = begin; j < end; j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = *param; subparam.probability = 0; subparam.C = 1.0; subparam.nr_weight = 2; subparam.weight_label = Malloc(int, 2); subparam.weight = Malloc(double, 2); subparam.weight_label[0] = +1; subparam.weight_label[1] = -1; subparam.weight[0] = Cp; subparam.weight[1] = Cn; struct svm_model *submodel = svm_train(&subprob, &subparam); for (j = begin; j < end; j++) { svm_predict_values(submodel, prob->x[perm[j]], &(dec_values[perm[j]])); // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel->label[0]; } svm_free_and_destroy_model(&submodel); svm_destroy_param(&subparam); } free(subprob.x); free(subprob.y); } sigmoid_train(prob->l, dec_values, prob->y, probA, probB); free(dec_values); free(perm); } // Binning method from the oneclass_prob paper by Que and Lin to predict the probability as a normal instance (i.e., not an outlier) static double predict_one_class_probability(const svm_model *model, double dec_value) { double prob_estimate = 0.0; int nr_marks = 10; if (dec_value < model->prob_density_marks[0]) prob_estimate = 0.001; else if (dec_value > model->prob_density_marks[nr_marks - 1]) prob_estimate = 0.999; else { for (int i = 1; i < nr_marks; i++) if (dec_value < model->prob_density_marks[i]) { prob_estimate = (double) i / nr_marks; break; } } return prob_estimate; } static int compare_double(const void *a, const void *b) { if (*(double *) a > *(double *) b) return 1; else if (*(double *) a < *(double *) b) return -1; return 0; } // Get parameters for one-class SVM probability estimates static int svm_one_class_probability(const svm_problem *prob, const svm_model *model, double *prob_density_marks) { double *dec_values = Malloc(double, prob->l); double *pred_results = Malloc(double, prob->l); int ret = 0; int nr_marks = 10; for (int i = 0; i < prob->l; i++) pred_results[i] = svm_predict_values(model, prob->x[i], &dec_values[i]); qsort(dec_values, prob->l, sizeof(double), compare_double); int neg_counter = 0; for (int i = 0; i < prob->l; i++) if (dec_values[i] >= 0) { neg_counter = i; break; } int pos_counter = prob->l - neg_counter; if (neg_counter < nr_marks / 2 || pos_counter < nr_marks / 2) { fprintf(stderr, "WARNING: number of positive or negative decision values <%d; too few to do a probability estimation.\n", nr_marks / 2); ret = -1; } else { // Binning by density double *tmp_marks = Malloc(double, nr_marks + 1); int mid = nr_marks / 2; for (int i = 0; i < mid; i++) tmp_marks[i] = dec_values[i * neg_counter / mid]; tmp_marks[mid] = 0; for (int i = mid + 1; i < nr_marks + 1; i++) tmp_marks[i] = dec_values[neg_counter - 1 + (i - mid) * pos_counter / mid]; for (int i = 0; i < nr_marks; i++) prob_density_marks[i] = (tmp_marks[i] + tmp_marks[i + 1]) / 2; free(tmp_marks); } free(dec_values); free(pred_results); return ret; } // Return parameter of a Laplace distribution static double svm_svr_probability( const svm_problem *prob, const svm_parameter *param) { int i; int nr_fold = 5; double *ymv = Malloc(double, prob->l); double mae = 0; svm_parameter newparam = *param; newparam.probability = 0; svm_cross_validation(prob, &newparam, nr_fold, ymv); for (i = 0; i < prob->l; i++) { ymv[i] = prob->y[i] - ymv[i]; mae += fabs(ymv[i]); } mae /= prob->l; double std = sqrt(2 * mae * mae); int count = 0; mae = 0; for (i = 0; i < prob->l; i++) if (fabs(ymv[i]) > 5 * std) count = count + 1; else mae += fabs(ymv[i]); mae /= (prob->l - count); info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n", mae); free(ymv); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int, max_nr_class); int *count = Malloc(int, max_nr_class); int *data_label = Malloc(int, l); int i; for (i = 0; i < l; i++) { int this_label = (int) prob->y[i]; int j; for (j = 0; j < nr_class; j++) { if (this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if (j == nr_class) { if (nr_class == max_nr_class) { max_nr_class *= 2; label = (int *) realloc(label, max_nr_class * sizeof(int)); count = (int *) realloc(count, max_nr_class * sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } // // Labels are ordered by their first occurrence in the training set. // However, for two-class sets with -1/+1 labels and -1 appears first, // we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances. // if (nr_class == 2 && label[0] == -1 && label[1] == 1) { swap(label[0], label[1]); swap(count[0], count[1]); for (i = 0; i < l; i++) { if (data_label[i] == 0) data_label[i] = 1; else data_label[i] = 0; } } int *start = Malloc(int, nr_class); start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; for (i = 0; i < l; i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; *nr_class_ret = nr_class; *label_ret = label; *start_ret = start; *count_ret = count; free(data_label); } // // Interface functions // svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) { svm_model *model = Malloc(svm_model, 1); model->param = *param; model->free_sv = 0; // XXX if (param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->prob_density_marks = NULL; model->sv_coef = Malloc(double *, 1); decision_function f = svm_train_one(prob, param, 0, 0); model->rho = Malloc(double, 1); model->rho[0] = f.rho; int nSV = 0; int i; for (i = 0; i < prob->l; i++) if (fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *, nSV); model->sv_coef[0] = Malloc(double, nSV); model->sv_indices = Malloc(int, nSV); int j = 0; for (i = 0; i < prob->l; i++) if (fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; model->sv_indices[j] = i + 1; ++j; } if (param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double, 1); model->probA[0] = svm_svr_probability(prob, param); } else if (param->probability && param->svm_type == ONE_CLASS) { int nr_marks = 10; double *prob_density_marks = Malloc(double, nr_marks); if (svm_one_class_probability(prob, model, prob_density_marks) == 0) model->prob_density_marks = prob_density_marks; else free(prob_density_marks); } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int, l); // group training data of the same class svm_group_classes(prob, &nr_class, &label, &start, &count, perm); if (nr_class == 1) info("WARNING: training data in only one class. See README for details.\n"); svm_node **x = Malloc(svm_node *, l); int i; for (i = 0; i < l; i++) x[i] = prob->x[perm[i]]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for (i = 0; i < nr_class; i++) weighted_C[i] = param->C; for (i = 0; i < param->nr_weight; i++) { int j; for (j = 0; j < nr_class; j++) if (param->weight_label[i] == label[j]) break; if (j == nr_class) fprintf(stderr, "WARNING: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool, l); for (i = 0; i < l; i++) nonzero[i] = false; decision_function *f = Malloc(decision_function, nr_class * (nr_class - 1) / 2); double *probA = NULL, *probB = NULL; if (param->probability) { probA = Malloc(double, nr_class * (nr_class - 1) / 2); probB = Malloc(double, nr_class * (nr_class - 1) / 2); } int p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { svm_problem sub_prob; int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci + cj; sub_prob.x = Malloc(svm_node *, sub_prob.l); sub_prob.y = Malloc(double, sub_prob.l); int k; for (k = 0; k < ci; k++) { sub_prob.x[k] = x[si + k]; sub_prob.y[k] = +1; } for (k = 0; k < cj; k++) { sub_prob.x[ci + k] = x[sj + k]; sub_prob.y[ci + k] = -1; } if (param->probability) svm_binary_svc_probability(&sub_prob, param, weighted_C[i], weighted_C[j], probA[p], probB[p]); f[p] = svm_train_one(&sub_prob, param, weighted_C[i], weighted_C[j]); for (k = 0; k < ci; k++) if (!nonzero[si + k] && fabs(f[p].alpha[k]) > 0) nonzero[si + k] = true; for (k = 0; k < cj; k++) if (!nonzero[sj + k] && fabs(f[p].alpha[ci + k]) > 0) nonzero[sj + k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int, nr_class); for (i = 0; i < nr_class; i++) model->label[i] = label[i]; model->rho = Malloc(double, nr_class * (nr_class - 1) / 2); for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) model->rho[i] = f[i].rho; if (param->probability) { model->probA = Malloc(double, nr_class * (nr_class - 1) / 2); model->probB = Malloc(double, nr_class * (nr_class - 1) / 2); for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model->probA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA = NULL; model->probB = NULL; } model->prob_density_marks = NULL; // for one-class SVM probabilistic outputs only int total_sv = 0; int *nz_count = Malloc(int, nr_class); model->nSV = Malloc(int, nr_class); for (i = 0; i < nr_class; i++) { int nSV = 0; for (int j = 0; j < count[i]; j++) if (nonzero[start[i] + j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n", total_sv); model->l = total_sv; model->SV = Malloc(svm_node *, total_sv); model->sv_indices = Malloc(int, total_sv); p = 0; for (i = 0; i < l; i++) if (nonzero[i]) { model->SV[p] = x[i]; model->sv_indices[p++] = perm[i] + 1; } int *nz_start = Malloc(int, nr_class); nz_start[0] = 0; for (i = 1; i < nr_class; i++) nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; model->sv_coef = Malloc(double *, nr_class - 1); for (i = 0; i < nr_class - 1; i++) model->sv_coef[i] = Malloc(double, total_sv); p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for (k = 0; k < ci; k++) if (nonzero[si + k]) model->sv_coef[j - 1][q++] = f[p].alpha[k]; q = nz_start[j]; for (k = 0; k < cj; k++) if (nonzero[sj + k]) model->sv_coef[i][q++] = f[p].alpha[ci + k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(x); free(weighted_C); free(nonzero); for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) free(f[i].alpha); free(f); free(nz_count); free(nz_start); } return model; } // Stratified cross validation void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) { int i; int *fold_start; int l = prob->l; int *perm = Malloc(int, l); int nr_class; if (nr_fold > l) { fprintf(stderr, "WARNING: # folds (%d) > # data (%d). Will use # folds = # data instead (i.e., leave-one-out cross validation)\n", nr_fold, l); nr_fold = l; } fold_start = Malloc(int, nr_fold + 1); // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if ((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l) { int *start = NULL; int *label = NULL; int *count = NULL; svm_group_classes(prob, &nr_class, &label, &start, &count, perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int, nr_fold); int c; int *index = Malloc(int, l); for (i = 0; i < l; i++) index[i] = perm[i]; for (c = 0; c < nr_class; c++) for (i = 0; i < count[c]; i++) { int j = i + rand() % (count[c] - i); swap(index[start[c] + j], index[start[c] + i]); } for (i = 0; i < nr_fold; i++) { fold_count[i] = 0; for (c = 0; c < nr_class; c++) fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold; } fold_start[0] = 0; for (i = 1; i <= nr_fold; i++) fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; for (c = 0; c < nr_class; c++) for (i = 0; i < nr_fold; i++) { int begin = start[c] + i * count[c] / nr_fold; int end = start[c] + (i + 1) * count[c] / nr_fold; for (int j = begin; j < end; j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0] = 0; for (i = 1; i <= nr_fold; i++) fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; free(start); free(label); free(count); free(index); free(fold_count); } else { for (i = 0; i < l; i++) perm[i] = i; for (i = 0; i < l; i++) { int j = i + rand() % (l - i); swap(perm[i], perm[j]); } for (i = 0; i <= nr_fold; i++) fold_start[i] = i * l / nr_fold; } for (i = 0; i < nr_fold; i++) { int begin = fold_start[i]; int end = fold_start[i + 1]; int j, k; struct svm_problem subprob; subprob.l = l - (end - begin); subprob.x = Malloc(struct svm_node*, subprob.l); subprob.y = Malloc(double, subprob.l); k = 0; for (j = 0; j < begin; j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for (j = end; j < l; j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } struct svm_model *submodel = svm_train(&subprob, param); if (param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates = Malloc(double, svm_get_nr_class(submodel)); for (j = begin; j < end; j++) target[perm[j]] = svm_predict_probability(submodel, prob->x[perm[j]], prob_estimates); free(prob_estimates); } else for (j = begin; j < end; j++) target[perm[j]] = svm_predict(submodel, prob->x[perm[j]]); svm_free_and_destroy_model(&submodel); free(subprob.x); free(subprob.y); } free(fold_start); free(perm); } int svm_get_svm_type(const svm_model *model) { return model->param.svm_type; } int svm_get_nr_class(const svm_model *model) { return model->nr_class; } void svm_get_labels(const svm_model *model, int *label) { if (model->label != NULL) for (int i = 0; i < model->nr_class; i++) label[i] = model->label[i]; } void svm_get_sv_indices(const svm_model *model, int *indices) { if (model->sv_indices != NULL) for (int i = 0; i < model->l; i++) indices[i] = model->sv_indices[i]; } int svm_get_nr_sv(const svm_model *model) { return model->l; } double svm_get_svr_probability(const svm_model *model) { if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != NULL) return model->probA[0]; else { fprintf(stderr, "Model doesn't contain information for SVR probability inference\n"); return 0; } } double svm_predict_values(const svm_model *model, const svm_node *x, double *dec_values) { int i; if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; #ifdef _OPENMP #pragma omp parallel for private(i) reduction(+:sum) schedule(guided) #endif for (i = 0; i < model->l; i++) sum += sv_coef[i] * Kernel::k_function(x, model->SV[i], model->param); sum -= model->rho[0]; *dec_values = sum; if (model->param.svm_type == ONE_CLASS) return (sum > 0) ? 1 : -1; else return sum; } else { int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double, l); #ifdef _OPENMP #pragma omp parallel for private(i) schedule(guided) #endif for (i = 0; i < l; i++) kvalue[i] = Kernel::k_function(x, model->SV[i], model->param); int *start = Malloc(int, nr_class); start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + model->nSV[i - 1]; int *vote = Malloc(int, nr_class); for (i = 0; i < nr_class; i++) vote[i] = 0; int p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model->nSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j - 1]; double *coef2 = model->sv_coef[i]; for (k = 0; k < ci; k++) sum += coef1[si + k] * kvalue[si + k]; for (k = 0; k < cj; k++) sum += coef2[sj + k] * kvalue[sj + k]; sum -= model->rho[p]; dec_values[p] = sum; if (dec_values[p] > 0) ++vote[i]; else ++vote[j]; p++; } int vote_max_idx = 0; for (i = 1; i < nr_class; i++) if (vote[i] > vote[vote_max_idx]) vote_max_idx = i; free(kvalue); free(start); free(vote); return model->label[vote_max_idx]; } } double svm_predict(const svm_model *model, const svm_node *x) { int nr_class = model->nr_class; double *dec_values; if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) dec_values = Malloc(double, 1); else dec_values = Malloc(double, nr_class * (nr_class - 1) / 2); double pred_result = svm_predict_values(model, x, dec_values); free(dec_values); return pred_result; } double svm_predict_probability( const svm_model *model, const svm_node *x, double *prob_estimates) { if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != NULL && model->probB != NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class * (nr_class - 1) / 2); svm_predict_values(model, x, dec_values); double min_prob = 1e-7; double **pairwise_prob = Malloc(double *, nr_class); for (i = 0; i < nr_class; i++) pairwise_prob[i] = Malloc(double, nr_class); int k = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { pairwise_prob[i][j] = min( max(sigmoid_predict(dec_values[k], model->probA[k], model->probB[k]), min_prob), 1 - min_prob); pairwise_prob[j][i] = 1 - pairwise_prob[i][j]; k++; } if (nr_class == 2) { prob_estimates[0] = pairwise_prob[0][1]; prob_estimates[1] = pairwise_prob[1][0]; } else multiclass_probability(nr_class, pairwise_prob, prob_estimates); int prob_max_idx = 0; for (i = 1; i < nr_class; i++) if (prob_estimates[i] > prob_estimates[prob_max_idx]) prob_max_idx = i; for (i = 0; i < nr_class; i++) free(pairwise_prob[i]); free(dec_values); free(pairwise_prob); return model->label[prob_max_idx]; } else if (model->param.svm_type == ONE_CLASS && model->prob_density_marks != NULL) { double dec_value; double pred_result = svm_predict_values(model, x, &dec_value); prob_estimates[0] = predict_one_class_probability(model, dec_value); prob_estimates[1] = 1 - prob_estimates[0]; return pred_result; } else return svm_predict(model, x); } static const char *svm_type_table[] = { "c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr", NULL }; static const char *kernel_type_table[] = { "linear", "polynomial", "rbf", "sigmoid", "precomputed", NULL }; int svm_save_model(const char *model_file_name, const svm_model *model) { FILE *fp = fopen(model_file_name, "w"); if (fp == NULL) return -1; char *old_locale = setlocale(LC_ALL, NULL); if (old_locale) { old_locale = strdup(old_locale); } setlocale(LC_ALL, "C"); const svm_parameter ¶m = model->param; fprintf(fp, "svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp, "kernel_type %s\n", kernel_type_table[param.kernel_type]); if (param.kernel_type == POLY) fprintf(fp, "degree %d\n", param.degree); if (param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) fprintf(fp, "gamma %.17g\n", param.gamma); if (param.kernel_type == POLY || param.kernel_type == SIGMOID) fprintf(fp, "coef0 %.17g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n", l); { fprintf(fp, "rho"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fprintf(fp, " %.17g", model->rho[i]); fprintf(fp, "\n"); } if (model->label) { fprintf(fp, "label"); for (int i = 0; i < nr_class; i++) fprintf(fp, " %d", model->label[i]); fprintf(fp, "\n"); } if (model->probA) // regression has probA only { fprintf(fp, "probA"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fprintf(fp, " %.17g", model->probA[i]); fprintf(fp, "\n"); } if (model->probB) { fprintf(fp, "probB"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fprintf(fp, " %.17g", model->probB[i]); fprintf(fp, "\n"); } if (model->prob_density_marks) { fprintf(fp, "prob_density_marks"); int nr_marks = 10; for (int i = 0; i < nr_marks; i++) fprintf(fp, " %.17g", model->prob_density_marks[i]); fprintf(fp, "\n"); } if (model->nSV) { fprintf(fp, "nr_sv"); for (int i = 0; i < nr_class; i++) fprintf(fp, " %d", model->nSV[i]); fprintf(fp, "\n"); } fprintf(fp, "SV\n"); const double *const *sv_coef = model->sv_coef; const svm_node *const *SV = model->SV; for (int i = 0; i < l; i++) { for (int j = 0; j < nr_class - 1; j++) fprintf(fp, "%.17g ", sv_coef[j][i]); const svm_node *p = SV[i]; if (param.kernel_type == PRECOMPUTED) fprintf(fp, "0:%d ", (int) (p->value)); else while (p->index != -1) { fprintf(fp, "%d:%.8g ", p->index, p->value); p++; } fprintf(fp, "\n"); } setlocale(LC_ALL, old_locale); free(old_locale); if (ferror(fp) != 0 || fclose(fp) != 0) return -1; else return 0; } static char *line = NULL; static int max_line_len; static char *readline(FILE *input) { int len; if (fgets(line, max_line_len, input) == NULL) return NULL; while (strrchr(line, '\n') == NULL) { max_line_len *= 2; line = (char *) realloc(line, max_line_len); len = (int) strlen(line); if (fgets(line + len, max_line_len - len, input) == NULL) break; } return line; } // // FSCANF helps to handle fscanf failures. // Its do-while block avoids the ambiguity when // if (...) // FSCANF(); // is used // #define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0) bool read_model_header(FILE *fp, svm_model *model) { svm_parameter ¶m = model->param; // parameters for training only won't be assigned, but arrays are assigned as NULL for safety param.nr_weight = 0; param.weight_label = NULL; param.weight = NULL; char cmd[81]; while (1) { FSCANF(fp, "%80s", cmd); if (strcmp(cmd, "svm_type") == 0) { FSCANF(fp, "%80s", cmd); int i; for (i = 0; svm_type_table[i]; i++) { if (strcmp(svm_type_table[i], cmd) == 0) { param.svm_type = i; break; } } if (svm_type_table[i] == NULL) { fprintf(stderr, "unknown svm type.\n"); return false; } } else if (strcmp(cmd, "kernel_type") == 0) { FSCANF(fp, "%80s", cmd); int i; for (i = 0; kernel_type_table[i]; i++) { if (strcmp(kernel_type_table[i], cmd) == 0) { param.kernel_type = i; break; } } if (kernel_type_table[i] == NULL) { fprintf(stderr, "unknown kernel function.\n"); return false; } } else if (strcmp(cmd, "degree") == 0) FSCANF(fp, "%d", ¶m.degree); else if (strcmp(cmd, "gamma") == 0) FSCANF(fp, "%lf", ¶m.gamma); else if (strcmp(cmd, "coef0") == 0) FSCANF(fp, "%lf", ¶m.coef0); else if (strcmp(cmd, "nr_class") == 0) FSCANF(fp, "%d", &model->nr_class); else if (strcmp(cmd, "total_sv") == 0) FSCANF(fp, "%d", &model->l); else if (strcmp(cmd, "rho") == 0) { int n = model->nr_class * (model->nr_class - 1) / 2; model->rho = Malloc(double, n); for (int i = 0; i < n; i++) FSCANF(fp, "%lf", &model->rho[i]); } else if (strcmp(cmd, "label") == 0) { int n = model->nr_class; model->label = Malloc(int, n); for (int i = 0; i < n; i++) FSCANF(fp, "%d", &model->label[i]); } else if (strcmp(cmd, "probA") == 0) { int n = model->nr_class * (model->nr_class - 1) / 2; model->probA = Malloc(double, n); for (int i = 0; i < n; i++) FSCANF(fp, "%lf", &model->probA[i]); } else if (strcmp(cmd, "probB") == 0) { int n = model->nr_class * (model->nr_class - 1) / 2; model->probB = Malloc(double, n); for (int i = 0; i < n; i++) FSCANF(fp, "%lf", &model->probB[i]); } else if (strcmp(cmd, "prob_density_marks") == 0) { int n = 10; // nr_marks model->prob_density_marks = Malloc(double, n); for (int i = 0; i < n; i++) FSCANF(fp, "%lf", &model->prob_density_marks[i]); } else if (strcmp(cmd, "nr_sv") == 0) { int n = model->nr_class; model->nSV = Malloc(int, n); for (int i = 0; i < n; i++) FSCANF(fp, "%d", &model->nSV[i]); } else if (strcmp(cmd, "SV") == 0) { while (1) { int c = getc(fp); if (c == EOF || c == '\n') break; } break; } else { fprintf(stderr, "unknown text in model file: [%s]\n", cmd); return false; } } return true; } svm_model *svm_load_model(const char *model_file_name) { FILE *fp = fopen(model_file_name, "rb"); if (fp == NULL) return NULL; char *old_locale = setlocale(LC_ALL, NULL); if (old_locale) { old_locale = strdup(old_locale); } setlocale(LC_ALL, "C"); // read parameters svm_model *model = Malloc(svm_model, 1); model->rho = NULL; model->probA = NULL; model->probB = NULL; model->prob_density_marks = NULL; model->sv_indices = NULL; model->label = NULL; model->nSV = NULL; // read header if (!read_model_header(fp, model)) { fprintf(stderr, "ERROR: fscanf failed to read model\n"); setlocale(LC_ALL, old_locale); free(old_locale); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } // read sv_coef and SV int elements = 0; long pos = ftell(fp); max_line_len = 1024; line = Malloc(char, max_line_len); char *p, *endptr, *idx, *val; while (readline(fp) != NULL) { p = strtok(line, ":"); while (1) { p = strtok(NULL, ":"); if (p == NULL) break; ++elements; } } elements += model->l; fseek(fp, pos, SEEK_SET); int m = model->nr_class - 1; int l = model->l; model->sv_coef = Malloc(double *, m); int i; for (i = 0; i < m; i++) model->sv_coef[i] = Malloc(double, l); model->SV = Malloc(svm_node*, l); svm_node *x_space = NULL; if (l > 0) x_space = Malloc(svm_node, elements); int j = 0; for (i = 0; i < l; i++) { readline(fp); model->SV[i] = &x_space[j]; p = strtok(line, " \t"); model->sv_coef[0][i] = strtod(p, &endptr); for (int k = 1; k < m; k++) { p = strtok(NULL, " \t"); model->sv_coef[k][i] = strtod(p, &endptr); } while (1) { idx = strtok(NULL, ":"); val = strtok(NULL, " \t"); if (val == NULL) break; x_space[j].index = (int) strtol(idx, &endptr, 10); x_space[j].value = strtod(val, &endptr); ++j; } x_space[j++].index = -1; } free(line); setlocale(LC_ALL, old_locale); free(old_locale); if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; model->free_sv = 1; // XXX return model; } void svm_free_model_content(svm_model *model_ptr) { if (model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) free((void *) (model_ptr->SV[0])); if (model_ptr->sv_coef) { for (int i = 0; i < model_ptr->nr_class - 1; i++) free(model_ptr->sv_coef[i]); } free(model_ptr->SV); model_ptr->SV = NULL; free(model_ptr->sv_coef); model_ptr->sv_coef = NULL; free(model_ptr->rho); model_ptr->rho = NULL; free(model_ptr->label); model_ptr->label = NULL; free(model_ptr->probA); model_ptr->probA = NULL; free(model_ptr->probB); model_ptr->probB = NULL; free(model_ptr->prob_density_marks); model_ptr->prob_density_marks = NULL; free(model_ptr->sv_indices); model_ptr->sv_indices = NULL; free(model_ptr->nSV); model_ptr->nSV = NULL; } void svm_free_and_destroy_model(svm_model **model_ptr_ptr) { if (model_ptr_ptr != NULL && *model_ptr_ptr != NULL) { svm_free_model_content(*model_ptr_ptr); free(*model_ptr_ptr); *model_ptr_ptr = NULL; } } void svm_destroy_param(svm_parameter *param) { free(param->weight_label); free(param->weight); } const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) { // svm_type int svm_type = param->svm_type; if (svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param->kernel_type; if (kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED) return "unknown kernel type"; if ((kernel_type == POLY || kernel_type == RBF || kernel_type == SIGMOID) && param->gamma < 0) return "gamma < 0"; if (kernel_type == POLY && param->degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if (param->cache_size <= 0) return "cache_size <= 0"; if (param->eps <= 0) return "eps <= 0"; if (svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if (param->C <= 0) return "C <= 0"; if (svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if (param->nu <= 0 || param->nu > 1) return "nu <= 0 or nu > 1"; if (svm_type == EPSILON_SVR) if (param->p < 0) return "p < 0"; if (param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; if (param->probability != 0 && param->probability != 1) return "probability != 0 and probability != 1"; // check whether nu-svc is feasible if (svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int, max_nr_class); int *count = Malloc(int, max_nr_class); int i; for (i = 0; i < l; i++) { int this_label = (int) prob->y[i]; int j; for (j = 0; j < nr_class; j++) if (this_label == label[j]) { ++count[j]; break; } if (j == nr_class) { if (nr_class == max_nr_class) { max_nr_class *= 2; label = (int *) realloc(label, max_nr_class * sizeof(int)); count = (int *) realloc(count, max_nr_class * sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } for (i = 0; i < nr_class; i++) { int n1 = count[i]; for (int j = i + 1; j < nr_class; j++) { int n2 = count[j]; if (param->nu * (n1 + n2) / 2 > min(n1, n2)) { free(label); free(count); return "specified nu is infeasible"; } } } free(label); free(count); } return NULL; } int svm_check_probability_model(const svm_model *model) { return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != NULL && model->probB != NULL) || (model->param.svm_type == ONE_CLASS && model->prob_density_marks != NULL) || ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != NULL); } void svm_set_print_string_function(void (*print_func)(const char *)) { if (print_func == NULL) svm_print_string = &print_string_stdout; else svm_print_string = print_func; }